Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Inform Med Unlocked ; 38: 101230, 2023.
Article in English | MEDLINE | ID: covidwho-2263779

ABSTRACT

The challenges posed by COVID-19's emergence have led to a search for its therapies. There is no cure for COVID-19 infection yet, but there is significant progress in vaccine formulation for prophylaxis and drug development (such as Paxlovid) for high-risk patients. As a contribution to the ongoing quest for solutions, this study shows potent phytocompounds identification as inhibitors of SARS-CoV-2 targets using in silico methods. We used virtual screening, molecular docking, and molecular dynamics (MD) simulations to investigate the interaction of some phytochemicals with 3CLpro, ACE2, and PLpro proteins crucial to the SARS-CoV-2 viral cycle. The predicted docking scores range from -5.5 to -9.4 kcal/mol, denoting appreciable binding of these compounds to the SARS-CoV-2 proteins and presenting a multitarget inhibition for COVID-19. Some phytocompounds interact favorably at non-active sites of the enzymes. For instance, MD simulation shows that an identified site on PLpro is stable and likely an allosteric region for inhibitor binding and modulation. These phytocompounds could be developed into effective therapy against COVID-19 and probed as potential multitarget-directed ligands and drug candidates against the SARS-CoV-2 virus. The study unveils drug repurposing, selectivity, allosteric site targeting, and multitarget-directed ligand in one piece. These concepts are three distinct approaches in the drug design and discovery pipeline.

2.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2273373

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19, which was declared a global pandemic in March 2020 by the World Health Organization (WHO). Since SARS-CoV-2 main protease plays an essential role in the virus's life cycle, the design of small drug molecules with lower molecular weight has been a promising development targeting its inhibition. Herein, we evaluated the novel peptidomimetic azatripeptide and azatetrapeptide nitriles against SARS-CoV-2 main protease. We employed molecular dynamics (MD) simulations to elucidate the selected compounds' binding free energy profiles against SARS-CoV-2 and further unveil the residues responsible for the drug-binding properties. Compound 8 exhibited the highest binding free energy of -49.37 ± 0.15 kcal/mol, followed by compound 7 (-39.83 ± 0.19 kcal/mol), while compound 17 showed the lowest binding free energy (-23.54 ± 0.19 kcal/mol). In addition, the absorption, distribution, metabolism, and excretion (ADME) assessment was performed and revealed that only compound 17 met the drug-likeness parameters and exhibited high pharmacokinetics to inhibit CYP1A2, CYP2C19, and CYP2C9 with better absorption potential and blood-brain barrier permeability (BBB) index. The additional intermolecular evaluations suggested compound 8 as a promising drug candidate for inhibiting SARS-CoV-2 Mpro. The substitution of isopropane in compound 7 with an aromatic benzene ring in compound 8 significantly enhanced the drug's ability to bind better at the active site of the SARS-CoV-2 Mpro.


Subject(s)
COVID-19 , Peptidomimetics , Humans , Peptidomimetics/pharmacology , SARS-CoV-2 , Molecular Dynamics Simulation , Esters/pharmacology , Molecular Docking Simulation , Protease Inhibitors
3.
Journal of Biotech Research ; 13:177-188, 2022.
Article in English | ProQuest Central | ID: covidwho-2033805

ABSTRACT

The 3C protease is distinguished from most proteases due to the presence of cysteine nucleophile that plays an essential role in viral replication. This peculiar structure encompassed with its role in viral replication has promoted 3C protease as an interesting target for therapeutic agents in the treatment of diseases caused by human rhinovirus (HRV). However, the molecular mechanisms surrounding the chirality of inhibitors of HRV 3C protease remain unresolved. Herein using in silico techniques such molecular dynamic simulation and binding free estimations via molecular mechanics poisson-boltzmann surface area (MM/PBSA), we present a comprehensive molecular dynamics study of the comparison of two potent inhibitors, SG85 and rupintrivir, complexed with HRV3C protease. The binding free energy studies revealed a higher binding affinity for SG85 of 58.853 kcal/mol than that for rupintrivir of 54.0873 kcal/mol and this was found to be in correlation with the experimental data. The energy decomposition analysis showed that residues Leu 127, Thr 142, Ser 144, Gly 145, Tyr 146, Cys 147, His 161, Val 162, Gly 163, Gly 164, Asn 165, and Phe 170 largely contributed to the binding of SG85, whereas His 40, Leu 127, and Gly 163 impacted the binding of rupintrivir. The results further showed that His 40, Glu 71, Leu 127, Cys 147, Gly 163, and Gyl 164 were crucial residues that played a key role in ligand-enzyme binding, and amongst these crucial residues, His 40, Glu 71, and Cys 147 appeared to be conserved in the active site of HRV-3C protease when bound by both inhibitors. These findings provided a comprehensive understanding of the dynamics and structural features and would serve as guidance in the design and development of potent novel inhibitors of HRV.

SELECTION OF CITATIONS
SEARCH DETAIL